
ECS132: Term Project

Chad Pickering, Chirag Kashyap

March 25, 2017

1 Introduction

The two applications of probability and statistics to computer science contained in this
project are a fair representation of the skills and concepts learned in ECS132. For each
problem, we state a premise of the question, establishing scope and utility, as well as
present the details of each process, such as justifying programming decisions and statistical
assumptions, and explaining computational procedures and analysis.

2 Problem A: An application of linear regression methods to
image processing

2.1 Premise

Multiple linear regression is a critical and widely-used methodology in image filter-
ing and processing, particularly where smoothing is concerned. Its practical use is not only
highlighted in its straightforward mathematical nature, but also in its flexibility and compat-
ibility with images of all sizes, colors, and attributes. In this application, we used multiple
linear regression models to predict the interior pixel values of a corrupted black-and-white
image, where a given randomly selected proportion of the pixels had been overwritten with
uniformly distributed noise. To this end, our predicted values of each interior pixel creates a
”smoother” resultant image, with the magnitude of smoothing dependent on the proportion
of noisy pixels introduced.

2.2 Procedures

Note: The R functions created for this application are generalized for a black-and-white
image of any dimensions. However, for the sake of this problem, one particular image, re-
ferred to as the ”original image” throughout the following analysis, was chosen for demon-
stration.

1

2.2.1 Building the Neighbor Matrix with getnonbound()

The original image has dimensions of 433 by 768 pixels; each of these 433×768 pixels,
then, is assigned a value in the range [0,1], darkest to lightest, representing its true greyscale
”identity”. The full pixel array is extracted using the R package pixmap for all pixels, and
the original image can be displayed in full greyscale.

Figure 1: Original image.

The pixels with neighbors on all sides (e.g. not on the border of the image) will be
referred to as interior pixels (whereas the pixels on the border will be dubbed exterior
pixels). Because each of these interior pixels’ greyscale values will eventually be predicted
by the to-be-generated regression model, a vector of all 431·766 values is created, denoted
as Y . This vector contains all true interior pixel greyscale values by column, from left to
right.

For each interior pixel, here, arbitrarily denoted yi, four immediately neighboring pixels
exist adjacent, denoted as follows in clockwise order starting from the pixel just above
yi, x

N
i , xEi , xSi , xWi , where the top pixel will be referred to as the northern pixel for the

remainder of the procedure, and so on. These directional superscripts are simply for clarity,
and never take on any numerical values. So, each interior pixel yi has its own unique set of
four neighbors partnered to it.

We can then take the vector of all xNi values in the same column-wise order as is Y

and create another vector, XN . Analogous vectors for the southern, eastern, and western
adjacent pixels are denoted as XS , XE , and XW , respectively. When all four vectors
are placed into a matrix with row order matching that of the order of the vector Y , the

2

dimensions are 431·766 × 4, one row per interior pixel, and one column per neighboring
pixel - we will call this the neighbor matrix.

2.2.2 Alternatives to Reducing Function Runtime by Vectorization: Pre-Allocating
Matrix Dimensions

In building the getnonbound() function to generate the matrix, the runtime is greatly
reduced when operations are vectorized. This way, R does not have to re-allocate memory
with every iteration; this slows the operation down proportional to the size complexity of
the object being operated on.

However, a more direct alternative of standard R vectorization with functionals (e.g.
sapply(), etc.) does informally exist, and we have exploited this fact. Within the function,
we directly pre-allocate memory (just as the source code of functionals do) using an empty
matrix exactly the dimensions required before the data is loaded into it. This pre-allocation
is exactly what vectorization requires (and why it is typically so much faster), but this
method is extremely explicit. This method resulted in elapsed total runtimes of about 2.28
seconds on average. [6]

2.2.3 Understanding the Regression Function for the Original Image

When regressing Y on all four neighbor vectors, we get the following regression equation:

ŷi = α̂+ β̂Nx
N
i + β̂Sx

S
i + β̂Ex

E
i + β̂Wx

W
i

When the original image is used (without any noise added), the equation is as follows
(estimated coefficients rounded to four decimal places):

ŷi = −0.0112 + 0.1711xNi + 0.1702xSi + 0.3391xEi + 0.3391xWi

We first notice that the estimated coefficients for north and south are almost the same,
as is for east and west. This can be interpreted as if either the north or south pixel’s
greyscale value increased by one unit (e.g. from 0 to 1) the increase of the estimated central
pixel value would be about 0.17. In contrast, if either the east or west pixel’s greyscale value
increased by one unit (e.g. from 0 to 1) the increase of the estimated central pixel value
would be about 0.339, approximately double the effect of the north and south pixels. When
looking at the original image, this intuitively makes sense because there is more consistency
in the image when traversing horizontal pixels (average row-wise variance of 0.0333) than
with traversing vertically (average column-wise variance of 0.0409); there is more variance
in any given column in contrast with any given row, on average. Thus, predicting a pixel’s
value from just its west and east neighbors is likely to be more accurate than with just its
north and south neighbors.

3

2.2.4 Low-Pass Filters and Convolution Kernels

There exists many methodologies adjacent to regression in the area of image smoothing, and
to emphasize a crucial point about why regression modeling works, it is beneficial to discuss
the concept of using weighted averages. In a sense, the calculated estimate of a pixel’s
greyscale value is a weighted average of the surrounding pixels, with the four beta estimates
as the respective weights in our example. In the paper ’An Adaptive Window Mechanism
for Image Smoothing’ by Goshtasby, et al., it is indicated that any smoothing techniques
used on solitary images is done in the spatial domain rather than the temporal domain
(through time), where smoothing reduces noise while preserving image structure. This
smoothing technique is also known as a low-pass filter; it averages out abrupt deviations
in magnitude in the image by calculating the average of each pixel and several surrounding
neighbors, replacing the central pixel with the resulting value. [2] [4]

Sometimes, depending on the nature of the image, applying a low-pass filter can suppress
noise that masked slight detail and gradual changes in the image. It is worth noting that
pixel intensities are averaged in a square region regardless of image dimension or non-
symmetry of the image. This procedure can be adjusted for dimension and symmetry, but
for the purpose of our analysis, the square neighborhood (with the four neighboring pixels,
as described) will remain.

If we were to choose a completely weighted methodology, our beta estimates would
suffice (adjustment is needed - more discussion later); this choice can be visualized with
what is known as a convolution kernel, an m×n grid that shows how each respective
pixel is weighted to determine the value of the central pixel. For example, a low-pass filter
applying equal weight to each adjacent/neighboring pixel would result in a grid with pixel
weight 1

mn (assuming all in the region are nonzero). [2]
Our ambitions are similar, but we would have to adjust the beta estimates so that they

sum to 1. This way, we can form a grid such that the kernel would have non-zero values only
at the northern, southern, eastern, and western pixels, with values approximately equal to
the estimates. Note that these estimates would vary as each simulation of random noise
yields different results.

0 0.1711 0

0.3391 0 0.3391

0 0.1702 0

0 0.1678 0

0.3326 0 0.3326

0 0.1669 0

Figure 2: Convolution kernels (beta estimates [top], adjusted beta estimates [bottom]).

Again, this weighting methodology is an adjacent method, and its similarities are meant

4

to stimulate thought about what the function of the beta estimates essentially are. Our
regression model was fit to minimize the sum of squared error, so we have to account for an
intercept term and assumptions of linearity and normality that a simple weighting scheme
does not have to account for.

2.2.5 Applying Noise and Employing Smoothing with denoise()

To demonstrate our smoothing mechanism based on the regression model, 20% of the pixels
in the original image are randomly chosen to be corrupted - true pixel values are replaced
by uniformly distributed random noise. This appears as a thin, yet immediately apparent
layer of grey ’snow’ over the entire image, as follows below. This noisy image is the input
of the getnonbound() function to generate the neighbor matrix (recall Sec. 2.2.1).

Figure 3: Original image, corrupted by uniformly distributed random noise.

In the function denoise(), we call getnonbound() to generate both the vector Y and
the neighbor matrix; these are needed to fit a regression function with unique values of β̂N ,
β̂S , β̂E , β̂W specific to the noisy image generated. We then use matrix multiplication to
multiply the values of the neighbor matrix by the vector of beta coefficients, which results
in a vector Y pred with the same dimensions as the vector Y containing the fitted values of
what we will call the predicted image. Some of these values may be slightly larger than
1 or slightly smaller than 0, so the range is truncated to the interval [0, 1]. Recall that only
interior pixels are predicted, so external pixels will remain noisy. This new vector Y pred can
then be plotted, and the predicted image can be seen. An example is below.

5

Figure 4: Predicted image.

The effects of the smoothing is quite apparent - by using the values of the four neigh-
boring pixels, we can compute a predicted value of each interior pixel based on the unique
multiple regression function. It is worth noticing that the image has less extreme black
or white pixels (values close to 0 and 1, respectively) - the predicted image is made up of
averages of pixels in small defined regions. The implication is that as the proportion of uni-
form noise increases, the more smooth the image gets; this is because the predicted values
generated by the regression function are more likely to be calculated based on pixels with
uniform noise (as they are more commonly found in the image), and the approximate mean
of a large sample of U(0,1) values is about 0.5, which is moderate grey (neither extremely
black nor white).

2.3 Conclusion and Further Applications

There are several possible variations of the methods and procedures used in this analysis,
some of which are much more high level. But, it is reassuring to know that a fundamental
applied statistical method such as multiple linear regression can be used in such a powerful
way to reduce noise in an image. In a future analysis with a more ambitious application,
we could regress our vector of interior pixel values on a matrix of columns such that the
distance from the pixel of interest to some other neighboring pixel (represented by some
column) is weighted by distance, similar to a Gaussian filter.

6

3 Problem B: Applications of regression and PCA on audio
data to explore prediction and error

3.1 Premise

Now, we would like to expand our use of linear regression techniques to predicting the release
year of songs based on several continuous variables containing audio data. By splitting the
entire dataset into two distinct sets, we will be able to generate a linear regression function
based on the training set and apply it to the test set to see how well prediction does overall.
Additionally, logistic regression will be employed to predict whether a song was released
before 1996 (corresponding to the introduction of autotuning) or not. Finally, we will regress
year against the principal components of all of the audio variables in the training set and
compute error in the test set. This process will show some very important results in terms
of how mean squared error behaves as number of principal components used in a model
increases.

3.2 Procedures

Note: Our discussion in this section will follow the order requested. Please find these split
into their respective sections below.

3.2.1 Data Input, Storage, and Access

Before any analysis is done on the data, we need to consider the data itself and how it is
read into R. There are two main ways to accomplish reading in very large text files, the
first being with the function read.csv(), which took a total of about 5.8 minutes on the
audio data. The second way is with fread() from the CRAN package data.table, which
took a total of about 2.8 minutes. Why does fread() take significantly less time? What is
the logic behind this discrepancy?

The read.csv() function reads all of the content into memory as a large character matrix
as if every column were of type character, and then later tries to coerce appropriate columns
to numeric types or factors in a following step - this takes quite a long time for datasets
with hundreds of thousands or millions of rows. In contrast, the fread() function merely
reads in each column as if the content were of type character; by avoiding the coercion step
altogether, a majority of the time is saved. An additional reason why fread() is significantly
faster is because the data that is read in is not physically copied in a system’s memory;
rather, the object created is just a copy of column pointers. This memory efficiency also
makes computational speed a lot quicker. [3] [1]

When we compare common storage decisions, we encounter a big difference between the
common data.frame and the data.table and how attributes of columns and subsets are
accessed. Whereas in a data.frame we can access the contents of the first column with
call form df[,1], in a data.table, dt[,1] simply returns 1, and for the fourth column for
instance, dt[,4], returns a 4. Thus, when length is called on any of these dt[,i] calls,

7

it just returns 1 because the result of all of those aforementioned calls returned vectors of
length 1.

Interestingly, this is a purposeful design choice by the author of this package. The
second argument within the brackets is an expression to be evaluated within the scope
of the data.table object because, it is claimed, it is bad practice to refer to columns by
number because if the ordering is changed, the code will not be referring to that specific
column by name and the result of the code will change completely. (By scope, we mean the
environment where the names of the columns themselves are variables to be used.) This
design choice increases clarity, as it is not immediately obvious to the writer of the code
or those who read it later which column is the ith column, so referring to it by its explicit
name (without quotation marks) is best. With this scheme, more flexibility is allowed - any
R expression can be placed in the second parameter or wrapped with list() if appropriate.
Instead of calling length() on a specific data.table column, we can instead use the .N

parameter to return the number of rows in the column (or whatever subset requested), and
the parameter by= to group rows in some fashion. [5]

3.2.2 The Training and Test Sets

The entire dataset has 515,345 rows, which is a very healthy sample from which to generate
a training and a test set. The training set consists of two-thirds of the rows of the full
dataset, randomly sampled; the remaining third forms the test set. These proportions are
at a good ratio such that the training set is large enough to build strong models (linear and
logistic regression are coming up in the discussion) and the test set is just large enough to
understand how well those models can predict and how their error behaves.

3.2.3 Comparing Two Means of an Audio Variable

Say an audio variable is chosen at random, like V77, and we would like to compare the
means of its values before Autotune was introduced and afterwards. Within the training
set, we split the data into these two groups (pre-1996 and otherwise) and use a 2-sample
t-test with Ho : µbefore = µafter as our null hypothesis and HA : µbefore 6= µafter as our
appropriate two-sided alternative hypothesis. We will test this with a type I error (α)
threshold of 0.05, and will generate the corresponding 95% confidence intervals as well.
Our sample size is so high in both samples that our t-distribution essentially converges to
an approximate Z-distribution.

Thus, when the test statistic of -3.6454 is compared to the critical value of about Z0.025=-
1.96, we can say that since the statistic is inside the rejection region (less than -1.96), the null
hypothesis is rejected. The p-value here is 0.000267, which suggests that if the population
means were truly equal in actuality, then we would have about a 0.0267% chance of observing
our test statistic or one more extreme. Therefore, we have sufficient evidence to suggest
that the population mean audio value for V77 before Autotune is significantly different from
the population mean audio value for V77 after Autotune was introduced.

8

We can better confirm this with the corresponding 95% confidence interval of (-0.5176,
-0.1556). A traditional interpretation would suggest that since 0 is not contained in this
interval, we can conclude that we are 95% confident that the true population mean of V77
before Autotune was significantly different from the true population mean of V77 after
Autotune; however, we have more information than that. We can see that both values are
negative - this suggests that the population mean of V77 after Autotune was introduced
is higher than the population mean of V77 pre-1996. But, we do have to be cautious.
The upper bound of the confidence interval is quite close to 0, and the range is a bit wide
compared to the scope of the difference, especially when factoring in the very high sample
size. So, we have a fair amount of evidence that the true population means are different, and
that the post-1996 population mean is likely higher than the other, but the entire landscape
of the question has to be taken into account, which introduces at least a small amount of
skepticism.

3.2.4 Linear Regression and Mean Squared Prediction Error

Using the training set, we regressed the year column on all of the audio variables in order to
predict, given new audio data points (from the test set), which year a song was recorded in.
All of the audio variables look very similar in their distribution and ranges, but no details
were given on how to interpret any of them. So we will just assume that they represent
auditory indicators that could be used as discriminatory factors or significant clues as to
which year the songs belong.

When the multiple linear regression function is fit based on the training set yielded
from a particular run, at first glance a majority of the beta estimates appear to have very
significant effects on the release year of a song because most p-values are very close to 0. But
by looking at the output, we can also see that a majority of the betas are quite close to 0,
and even if those are deemed significant predictors (in that they deviate from 0 significantly
and therefore have an effect on year), their effect could be minuscule in comparison to the
few variables that have larger beta estimates with mild to high significance. The point
estimate of the intercept term is about 1951, which implies that if all audio variables were
0, then the predicted year would be 1951; however, since we do not know how to interpret
the audio variables, we do not understand if the intercept term has a relevant meaning to
us.

There are four variables, V2, V7, V9, and V12, that all have beta estimates farthest
from 0 in comparison with the rest and have p-values near 0 - these four would likely be kept
in a final model generated by traditional model selection procedures (e.g. forward selection
with AIC, etc.). For example, with all other variables held constant, we can say that a
one unit increase of X2 (corresponds to V2) will result in an approximate 0.875 increase
in the predicted year. This suggests that as the years went on, the numerical value of V2
tended to increase (perhaps Autotuning was a factor, but we certainly cannot conclude
this whatsoever). Similar interpretations can be developed for the other variables, with the
direction of effect on release year determined by the sign on the particular beta estimate.

The mean squared prediction error (MSPE) was computed to be about 90.89855 overall

9

on this full/saturated model. This can be interpreted as the expected value of the squared
differences between the values fitted by the linear regression model and the observed values
in the test set (what we tried to predict). MSPE is a method of estimating variation be-
tween model predictions and observed values, where low MSPEs indicate that models have
strong predictive power. The MSPE of a model must be compared to MSPEs of other mod-
els to draw conclusions. For example, we know that adding a predictor cannot tell us less
information about the response, but does this new predictor tell us a significant amount of
information such that it is worth having an additional parameter in the model? Using this
mentality, we can choose the best models using best subset selection (very computationally
expensive) or, as it was suggested earlier, traditional model selection procedures. Typically,
though, predictive models should include more predictors, so we would use backward selec-
tion (starting with the full model) with the AIC criterion, which does not penalize number
of parameters as much as the BIC criterion.

3.2.5 Logistic Regression and Classification Error

Within the training set, we can further stratify the data based on if the songs were released
before 1996 or not. From an outside perspective, the year 1996 seems like a very random year
to differentiate between songs. However, 1996 was the year that Autotune was introduced
and implemented in the music industry. The program is used to alter pitch in the vocal and
musical aspects of songs, and its use became commonplace in several facets of the industry
very quickly. Because of its rapid spread, we want to know if we can predict whether
a song was released before 1996 or after using logistic regression on the audio variables
used in previous sections. If the error rate on our predictions is low, we can conclude that
Autotuning was likely a major factor in the numerical shifts in most if not all of the audio
variables. If the error rate is high, or prediction is worse than a coin flip, we can say that
Autotuning did not significantly change the audio variables too much or at all.

Since simple logistic regression requires a binary variable, we created a new column
called ’autotune’ in both the test and training data sets. We defined 1 to be songs created
before 1996 and 2 to be songs created during or after 1996. This allowed the logistic
regression to be run properly and our prediction results to make sense. After we ran the
regression, we noted similarities between the linear and logistic regressions. Many of the
same predictor variables that had high z-values in the logistic regression had high t-values
in the linear regression. High (or significantly deviated) Z-values and t-values are indicators
of if a variable is significant enough that it merits a place in the final, condensed model
(through model selection criterion). In particular, V2, V3, V4, V7, and V14 all had |z-values|
higher than 30. In our linear regression, those variables had the five highest |t-values|. This
indicates that those 5 variables are very good predictors of year, not just if a song was
released before 1996 or not.

After fitting the model, we predicted the test data set using response. This gave us a
probability of whether or not the song was released before 1996 or not. We defined any
probability over 0.5 to be True and then added one. This made any probability below 0.5 to
be 1 and any probability over 0.5 to be 2, resulting in the binary variable we wanted. Next,

10

we used made a classification table to see how many songs were misclassified. We ended up
with a reasonable overall error rate of 0.2132. This can be interpreted as the probability
that a song is misclassified when predicted through this logistic regression model. From the
following table, songs that were released previous to 1996 were more commonly misclassified
as songs released after 1996, with a classification rate of 0.444. Songs that were released
after 1996 had a much higher classification rate, right around 0.919.

Figure 5: Classification Table from Logistic Regression

While our logistic model does a great job of correctly predicting songs that were released
after 1996, it lacks the power to correctly predict songs that were released before 1996. This
could be because of confounding variables or a myriad of other reasons. In any case, the
high classification rate of songs released after 1996 suggests that it could be possible that
Autotune made it easier to predict if a song was released after 1996.

3.2.6 Principal Component Analysis and Mean Squared Error

Principal Component Analysis (PCA) is a method of reducing the dimension of a data
set. For example, if a data set contained 150 different variables, PCA would output 150
different components, but the first couple of components would have the vast majority of
the variation. This allows researchers and data scientists to reduce the time and memory it
takes to run an analysis on an entire data set. They can instead use a few selected columns
of PCA scores to obtain similar results in a reasonable time frame. In the case of our
audio data, we have 90 variables that contain data, and more importantly, some amount of
variation within each variable. This variation helped our two regression models differentiate
and predict year and if a song was released before or after 1996, respectively. By running the
function prcomp()$sd on our audio data, we can determine what percentage of variation
is represented in each PCA component, as shown in the figure below.

Figure 6: Percentage of Variation Represented in Each PCA Component

Likewise, similar to mean squared prediction error, mean squared error is a method
of estimating the variation between fitted values and observed values. A low MSE would

11

indicate that the model has a good fit, while a high MSE would indicate that the model
has significant room for adjustment. The MSE of a model must be compared to MSEs of
other models to conclude whether the fit is sufficient. In this case, we have the MSE values
of 90 different models to compare below.

Figure 7: MSE by Number of PCA Components

The question posed has a very straightforward answer; anyone who knows about PCA
could surmise that the MSE would decrease by adding more PCA components, just as was
reasoned analogously in Sec. 3.2.4. However, proving that theory based on our data is a
difficult endeavor as it is very computationally intense. Figuring out how to configure the
for loop (3 lines which can be seen in the appendix below) took many hours, and crashed
many computers and RStudio sessions. We obtained each PC component by once using
the function prcomp()$x, which outputted all of the PCA scores for each element in the
original data set. We then ran a for loop that constructed the linear regression model 90
times, while adding a PCA component each time. The loop also inputted the MSE of that
particular model into a data frame. In the end, we plotted the data frame and proved our
theory through the figure below.

Figure 8: Plot of MSE by Number of PC Components

We can conclude that while the MSE does decrease by adding more PCA components,
the decrease of adding a component is quite minimal for most components. This is because

12

the variation is spread out between the PCA components relatively evenly. Since the first
PCA component only accounts for 14% of the total variation, the component by itself would
not be a good predictor for the model. Adding subsequent components (the equivalent of
more predictors) would solve this problem. The question then becomes how many com-
ponents it would take to develop a good predictive model. For example, taking 10 PCA
components would account for 50% of the variation in the original data set, but the remain-
ing 50% would not be taken into account. In order to account for 90% of the variation,
one would have to use 48 PCA components. A statistical analysis run using 48 of our 90
total PCA components would result in a similar conclusion to one using all 90 components,
and could theoretically cut the time and memory usage of that computationally intensive
analysis in half.

3.3 Conclusion

When running both the linear regression and PCA analyses, it grew increasingly clear
that the two methods had several things in common. Developing a predictive model with
enough predictors to yield fairly accurate outcomes and yet have fewer parameters than the
full model to reduce complexity is a goal of both methods. In our case, there were a few, if
not a dozen variables of the 90 that contributed more to the overall predictive power than
the others (some were pointed out explicitly above). When keeping all predictors in the
linear regression model, we noticed that the mean squared prediction error was the same
as the mean squared error when all principal components remained in the model in Sec.
3.2.6, which makes intuitive sense since both methods use the same foundational formula
- comparing fitted/predicted values and observed values. We also noticed that the logistic
regression model does a fair job of predicting if songs were released before or after 1996;
the classification accuracy was about 78.68%, suggesting that it could be possible that
Autotuning changed at least some of the numeric values in the audio variables significantly.
In short, the regression methods and PCA presented above hold a great amount of weight
in the efforts to analyze predictive power in any study, and if the amount of data provided is
large enough, stratifying the data into two distinct sets can be a useful tactic in developing
strong models.

13

4 Works Cited

References

[1] Analytics Vidhya. data.table() vs. data.frame() - Learn to work on
large data sets in R. https://www.analyticsvidhya.com/blog/2016/05/

data-table-data-frame-work-large-data-sets/. Web. Access: 2017 March
23.

[2] Cyanogen Imaging Maxlm DL. Low-Pass Filtering (Blurring). https:

//diffractionlimited.com/help/maximdl/Low-Pass_Filtering.htm. Web.
Access: 2017 March 22.

[3] Gillespie, C. Importing Data. https://csgillespie.github.io/efficientR/

5-3-importing-data.html. Web. Access: 2017 March 23.

[4] Goshtasby, et al. An Adaptive Window Mechanism for Image Smoothing. Web. Access:
2017 March 22.

[5] read.table package FAQ. FAQs about the read.table package in R http://datatable.

r-forge.r-project.org/datatable-faq.pdf. Web. Access: 2017 March 23.

[6] Ross, N. Vectorization in R - Why? 2014 April 16. http://www.noamross.net/blog/
2014/4/16/vectorization-in-r--why.html. Web. Access: 2017 March 23.

14

https://www.analyticsvidhya.com/blog/2016/05/data-table-data-frame-work-large-data-sets/
https://www.analyticsvidhya.com/blog/2016/05/data-table-data-frame-work-large-data-sets/
https://diffractionlimited.com/help/maximdl/Low-Pass_Filtering.htm
https://diffractionlimited.com/help/maximdl/Low-Pass_Filtering.htm
https://csgillespie.github.io/efficientR/5-3-importing-data.html
https://csgillespie.github.io/efficientR/5-3-importing-data.html
http://datatable.r-forge.r-project.org/datatable-faq.pdf
http://datatable.r-forge.r-project.org/datatable-faq.pdf
http://www.noamross.net/blog/2014/4/16/vectorization-in-r--why.html
http://www.noamross.net/blog/2014/4/16/vectorization-in-r--why.html

Problem A Code:

1 # ECS 132 Fina l Pro j e c t : Problem A
2
3 l i b r a r y (pixmap) # package r equ i r ed
4 setwd (’ . . . / ECS132/TermProject ’) # s e t appr . w. d .
5 l l l <− read .pnm(’LLL . pgm ’) # read in the image
6 p l o t (l l l)
7 # re tu rn s an R l i s t c o n s i s t i n g o f a vec to r y and a matrix x :
8 # vecto r y : a l l the va lue s o f the i n t e r i o r p i x e l s ,
9 # in column−major order − l ength (nr−2)∗(nc−2)

10 # matrix x : (nr−2)∗(nc−2) rows and 4 columns ,
11 # f o r the N/S/E/W neighbor p i x e l va lue s
12 getnonbound = func t i on (imgobj){
13 a l l = imgobj@grey # e x t r a c t the f u l l p i x e l array ,
14 # numbers in [0 , 1] , darkes t to l i g h t e s t
15 nr = dim (imgobj@grey) [1] # number o f rows in f u l l p i x e l array
16 nc = dim (imgobj@grey) [2] # number o f columns in f u l l p i x e l array
17 i n t e r i o r = a l l
18 i n t e r i o r [c (1 , nr) ,] = 2 # a s s i g n f i r s t and l a s t rows (” e x t e r i o r rows ”) to 2
19 i n t e r i o r [, c (1 , nc)] = 2 # a s s i g n f i r s t and l a s t c o l s (” e x t e r i o r rows ”) to 2
20 y = i n t e r i o r [2 : (nr−1) , 2 : (nc−1)] # y i s a s s i gned the matrix
21 # that i s t r u l y the ” i n t e r i o r ” r eg i on
22 y = as . vec to r (y) # convert to vec to r (d e f a u l t s to column−major order)
23 x = matrix (, nrow = length (y) , nco l = 4) # empty matrix ,
24 # dimensions o f i n t e r i o r r eg i on and 4
25 count = 0
26 f o r (j in 1 : nco l (a l l)){
27 f o r (i in 1 : nrow (a l l)){
28 i f (i n t e r i o r [i , j] != 2){ # f o r a l l e n t r i e s in the t rue i n t e r i o r r eg i on . . .
29 count = count + 1
30 # a s s i g n empty matrix N, S , E, W
31 x [count ,] = c (a l l [i −1, j] , a l l [i +1, j] , a l l [i , j +1] , a l l [i , j −1])
32 }
33 }
34 }
35 return (l i s t (y , x)) # returned l i s t r eques ted
36 }
37
38 # make no i s e p i c u t r e
39 l l l n o i s e = l l l
40 # get the p i x e l va lue s
41 l l l g r e y = l l l @ g r e y

15

42 # randomly sample and r e p l a c e p i x e l va lue s with va lue s between (0 , 1) ;
43 # can choose p between 0 and 1
44 l l l g r e y [sample (1 : l ength (l l l g r e y) , l ength (l l l g r e y) ∗ . 2 ,
45 r e p l a c e = FALSE)] = r u n i f (l ength (l l l g r e y)∗0 . 2 , 0 , 1)
46 # r e s e t p i x e l va lue s
47 l l l n o i s e @ g r e y = l l l g r e y
48 # p lo t no i sy image
49 p l o t (l l l n o i s e)
50
51 # Makes a new f i l e c a l l e d deno i s e . pgm, in the cur rent working d i r e c t o r y
52 # the new f i l e uses va lue s o f the NSEW p i x e l s
53 # to p r e d i c t the value o f a l l p i x e l s
54 # in an e f f o r t to de−no i s e the inputted image .
55 deno i s e = func t i on (imgname){
56 nr = dim (imgname@grey) [1] # number o f rows in f u l l p i x e l array
57 nc = dim (imgname@grey) [2] # number o f columns in f u l l p i x e l array
58 xy = getnonbound (imgname) # use func t i on nonbound to get x , y
59 y = xy [1] [[1]]
60 x = xy [2] [[1]]
61 # get c o e f f i c i e n t s o f x and y
62 pred = c o e f (summary(lm(y˜x [, 1]+ x [, 2]+ x [, 3]+ x [, 4]))) [2 : 5 , 1]
63 # mult ip ly the c o e f f i c i e n t s by the NSEW values
64 p i c = as . vec to r (x %∗% pred)
65 # make sure no va lues are above 1 or under 0
66 f o r (i in 1 : l ength (p i c)){
67 i f (p i c [i] > 1)
68 p i c [i] = 1
69 i f (p i c [i] < 0)
70 p i c [i] = 0
71 }
72 # make image in to a matrix
73 p i c = matrix (data = pic , nrow = nr − 2 ,
74 nco l = nc − 2)
75 # s e t new i n t e r i o r va lue s based on pred i c t ed va lue s
76 imgname@grey [2 : (nr−1) , 2 : (nc−1)] = p i c
77 p l o t (imgname)
78 # wr i t e to f i l e
79 wr i t e .pnm(imgname , ’ deno i sed . pgm ’)
80 }
81
82 deno i s e (l l l n o i s e) # c a l l f unc t i on

16

Problem B Code:

1 # ECS 132 Fina l Pro j e c t : Problem B
2 setwd (’/ home/ckashyap/Downloads ’) # s e t appr . w. d .
3
4 # http :// s tackove r f l ow . com/ que s t i on s /6262203/
5 # measuring−funct ion−execut ion−time−in−r
6 # get o r i g i n a l time
7 t ime csv = Sys . time ()
8 # read in f i l e
9 YearPredictionMSD <− read . csv (’ YearPredictionMSD . txt ’ ,

10 header = FALSE, sep = ” ,”)
11 t ime csv = Sys . time () − t ime csv
12 # get time d i f f e r e n c e
13 t ime csv
14
15 # load in l i b r a r y
16 l i b r a r y (data . t ab l e)
17 # get o r i g i n a l time
18 t ime f r ead = Sys . time ()
19 # read in f i l e
20 YearPredictionMSD <− f r ead (” YearPredictionMSD . txt ”)
21 t ime f r ead = Sys . time () − t ime f r ead
22 # get time d i f f e r e n c e
23 t ime f r ead
24
25 # YearPredictionMSD = YearPredictionMSD [sample (nrow (YearPredictionMSD) ,
26 # c e i l i n g (l ength (YearPredictionMSD$V1) ∗ (. 1))) ,]
27
28 # randomly sample f o r index numbers to d i f f e r e n t i a t e between t e s t / t r a i n i n g data
29 index numbers = sample (nrow (YearPredictionMSD) ,
30 c e i l i n g (l ength (YearPredictionMSD$V1)∗ (1 / 3)))
31 t e s t = YearPredictionMSD [index numbers ,]
32 t r a i n i n g = YearPredictionMSD [! index numbers ,]
33
34 # make two d f s which d i f f e r e n t i a t e i f song was be f o r e or a f t e r 1996
35 t r a in today = t r a i n i n g [which (tra in ing$V1 >= 1996)]
36 t r a i n 1 99 6 = t r a i n i n g [which (tra in ing$V1 < 1996)]
37
38 # get mean o f V77 o f both d f s
39 old77 = mean(tra in 1996$V77)
40 new77 = mean(tra in today$V77)
41

17

42 # f i t a r e g r e s s i o n model with a l l v a r i a b l e s V2 to V91
43 t r a i n f i t = lm(V1 ˜ . , data = t r a i n i n g)
44 summary(t r a i n f i t)
45 # p r e d i c t year us ing the f i t o f our model
46 t e s t p r e d i c t = p r e d i c t (t r a i n f i t , t e s t , i n t e r v a l = ’ p r ed i c t i on ’) [, 1]
47 # get average squared sum e r r o r or MSE
48 avgSE = sum ((test$V1 − t e s t p r e d i c t)ˆ2)/ l ength (t e s t p r e d i c t)
49
50 # c r e a t e binary v a r i a b l e f o r coming l o g i s t i c r e g r e s s i o n
51 # in both t e s t and t r a i n i n g
52 t ra in ing$auto tune = 1
53 t ra in ing$auto tune [which (tra in ing$V1 >= 1996)] = 2
54 t ra in ing$auto tune = as . f a c t o r (t ra in ing$auto tune)
55 te s t$autotune = 1
56 te s t$autotune [which (test$V1 >= 1996)] = 2
57 te s t$autotune = as . f a c t o r (t e s t$autotune)
58
59 # f i t a l o g i t model with a l l v a r i a b l e s V2 to V91
60 l o g f i t = glm (autotune ˜ . − V1 , data = t ra in ing , fami ly = binomial)
61 summary(l o g f i t)
62 # p r e d i c t us ing response as type , so p r e d i c t i o n s are between 0 and 1
63 l o g p r e d i c t = p r e d i c t (l o g f i t , t e s t , type = ’ response ’)
64 # now we can view as p r e d i c t i o n s , 1 or 2
65 l o g p r e d i c t = (l o g p r e d i c t > 0 . 5) + 1
66 # get ta b l e o f p r e d i c t i o n s based on i f p r e d i c t i o n was r i g h t or not
67 l og con = t a b l e (t rue = test$autotune , model = l o g p r e d i c t)
68 # get e r r o r ra t e us ing t a b l e
69 e r r o r r a t e = (log con [2] + log con [3]) / l ength (test$V1)
70
71 # d e l e t e binary v a r i a b l e
72 t r a i n i n g = t r a i n i n g [,−92]
73 t e s t = t e s t [,−92]
74
75 # run pca on V2 to V91 and get s c o r e s f o r every element
76 pca = data . frame (prcomp (YearPredictionMSD [, −1]) $x)
77 # append V1 onto dataframe
78 pca = data . frame (append (pca , YearPredictionMSD [, 1]))
79 # c r e a t e t e s t / t r a i n i n g us ing prev ious index numbers
80 p c a t e s t = data . frame (pca [index numbers ,])
81 p c a t r a i n i n g = data . frame (pca[− index numbers ,])
82 #what percentage o f v a r i a t i o n i s r ep r e s ent ed in each component
83 pca var = prcomp (YearPredictionMSD [, −1]) $sd

18

84 pca var = pca var /sum(pca var)
85
86 # c r e a t e s to rage f o r the MSE
87 pcaMSE = numeric (0)
88
89 # loop to run l i n e a r r e g r e s s i o n
90 #http :// tex . stackexchange . com/ que s t i on s /11177/how−to−write−hidden−notes−in−a−l a tex− f i l e
91 f o r (i in 1 : 90){
92 # f i t formula everyt ime and paste formula needed
93 f i t p c a =lm(as . formula (c (”V1 ˜” ,
94 paste (names (p c a t r a i n i n g) [1 : i] , c o l l a p s e = ”+”))) ,
95 data = p c a t r a i n i n g)
96 # p r e d i c t year us ing the f i t o f our model on the t e s t df
97 t e s t p r e d i c t = p r e d i c t (f i t p c a , pca t e s t , i n t e r v a l = ’ p r ed i c t i on ’) [, 1]
98 # c a l c u l a t e the MSE of our model
99 pcaMSE = c (pcaMSE , sum ((pca test$V1 − t e s t p r e d i c t)ˆ2)/ l ength (t e s t p r e d i c t))

100 }
101
102 # load in l i b r a r y
103 l i b r a r y (ggp lot2)
104 # c r e a t e df , s i n c e ggp lot doesn ’ t use ve c to r s we l l
105 pcaMSE = data . frame (pcaMSE)
106 # p lo t our MSE by Number o f PCA components
107 ggp lot (data = pcaMSE) + geom point (aes (x=seq (1 : 9 0) , y=pcaMSE)) +
108 g g t i t l e (”MSE by Number o f PCA Components ”) +
109 labs (x = ’Number o f PCA Components ’ , y = ’MSE o f Linear Regress ion ’)
110
111 sum(pca var [1 : 1 0])
112 sum(pca var [1 : 4 8])

19

A Contributions

Chad Pickering: Majority of report. Helped with code.
Chirag Kashyap: Majority of code. Helped with report.

20

	Introduction
	Problem A: An application of linear regression methods to image processing
	Premise
	Procedures
	Building the Neighbor Matrix with getnonbound()
	Alternatives to Reducing Function Runtime by Vectorization: Pre-Allocating Matrix Dimensions
	Understanding the Regression Function for the Original Image
	Low-Pass Filters and Convolution Kernels
	Applying Noise and Employing Smoothing with denoise()

	Conclusion and Further Applications

	Problem B: Applications of regression and PCA on audio data to explore prediction and error
	Premise
	Procedures
	Data Input, Storage, and Access
	The Training and Test Sets
	Comparing Two Means of an Audio Variable
	Linear Regression and Mean Squared Prediction Error
	Logistic Regression and Classification Error
	Principal Component Analysis and Mean Squared Error

	Conclusion

	Works Cited
	Contributions

