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Introduction 

 Dealing with depression on a daily basis can be debilitating for many people. Because 

depression is not well defined, there is no way of accurately diagnosing it using physical 

measures (like a blood test). Many depressed people think they are just going through tough 

times, and seek out the advice of therapists, psychiatrists, psychologists, and counselors. Even 

these people have a tough time deciding whether a patient is depressed or going through a 

tough time. The objective of this report is to find a series of variables that can accurately 

predict if a patient is depressed. In this project, I will fit a multiple logistic regression model that 

accurately predicts a diagnosis of depression, according to our dataset.  

Material and Methods 

The data used in the project consists of 400 patients who were either diagnosed with 

depression or not. The following variables that will help us predict a diagnosis of depression: 

PCS, MCS, Beck, PGend, Age, and Education. Professor Azari gave us this dataset, and the whole 

thing can be viewed at http://www.stat.ucdavis.edu/~azari/sta138/final.dat. He does not tell us 

where the data set is from, or where it was sourced from. PCS is the physical component of the 

SF-36, which measure the health status of the patient. MCS is the mental component of the SF-

36, which measure the health status of the patient. Beck is the beck depression score. PGend is 

the patient gender. Age is self-explanatory. Education is the number of years of formal scoring. 

All of the variables are continuous, beside PGend, which is binary. Our binary response is DAV, 

which indicates the diagnosis of depression. Using multiple logistic regression I can model the 

probability of a diagnosis of depression with the following formula: logit[π(x)] = β0 + β1x1 + β2x2 

+ … + βmxm, for βj= 1, 2, …, m.  

 I will first model univariate logistic regressions for each of the six possible explanatory 

variables in order to get a better view of the data. Then, I will estimate the parameters βj‘s by 

using a stepwise procedure with AIC as my model selection criterion. This will not include 

interactions, so this model will assume independence between the explanatory variables. Next, 

I will examine the interactions by again using a stepwise procedure with AIC as the selection 

criterion. After finding the best possible logistic model for the data, I will use Wald hypothesis 

test and Wald confidence intervals to make sure the estimated parameters are statistically 

significant. Confidence intervals will also be provided to explain the various odds ratios within 

the model. A Hosmer and Lemeshow test goodness of fit test will be done to make sure the 

model fits properly. Percent concordant and percent discordant will be used to analyze the 

association between observed and predicted probabilities. Finally, I will also analyze the 

standardized Pearson residuals to make sure none of them deviate. The final model will be used 

to predict the probability of a diagnosis of depression and I will comment on the validity of this 

prediction.  

Results 

http://www.stat.ucdavis.edu/~azari/sta138/final.dat


 

 The AIC values from modeling a univariate logistic model for each of the size possible 

explanatory variables are below, along with the z-value and p-value from the Wald hypothesis 

test.  

 PCS MCS Beck PGend Age Education 

AIC 352.68 314.37 324.69 347.51 355.04 352.2 

z-Value -1.746 -6.041 5.474 -2.728 0.842 1.819 

p-value 0.0808 1.53*10-9 4.44*10-8 0.00637 0.4 0.0689 
From the AIC and p-values, it is clear that MCS, Beck, and PGend should be in our final 

independent model. For PCS, Age, and Education, it is unclear if those variables will add to the 

final logistic model, based solely on their univariate logistic models.  

 The probability of a diagnosis of depression can be modeled with the maximum 

likelihood estimates for all of the βjs. Using multiple logistic regression and a stepwise 

procedure with AIC as my model selection criterion, I found β0 = -3.066, β1 = -0.046, β2 = 0.183, 

β3 = 0.074, β4 = -0.700, β5 = 0.016. PCS did not make it into the final model. 

 

 

 By the same process above, I tested to see if any interactions between variables should 

be included. It turned out that none of the interactions would help the model at all, so I ended 

up not including any of them. Therefore, our final model is still the model described above.  

  



 

 Now we test all of the βjs using the Wald Hypothesis test, with Ho : β = 0 and Ha : β  0. 

For MCS (β1), we have a z-value of -3.130 and a p-value of 0.00174, so we reject so we reject Ho 

and conclude Ha at an   0.05. For Education (β2), we have a z-value of 3.029 and a p-value of 

0.00245, so we reject Ho and conclude Ha at an   0.05. For Beck (β3), we have a z-value of 

2.334 and a p-value of 0.01961, so we reject Ho and conclude Ha at an   0.05. For PGend (β4), 

we have a z-value of -2.058 and a p-value of 0.03959, so we reject Ho and conclude Ha at an   

0.05. For Age (β5), we have a z-value of 1.572 and a p-value of 0.11592, so we fail to reject Ho. 

Although, the hypothesis test does not think Age is significant, AIC still thinks that it marginally 

helps the model, so I decided to keep the variable. Likewise, the 95% Wald confidence interval 

for β1 is -0.046 ± (1.96)0.015 = (-0.0754, -0.0166), for β2 is 0.183 ± (1.96)0.061 = (0.0634, 

0.3025), for β3 is 0.074 ± (1.96)0.032 = (0.0113, 0.1367), for β4 is -0.700 ± (1.96)0.340 = (-

1.3664, -0.0366), for β5 is 0.016 ± (1.96)0.010 = (-0.0036, 0.356). All of my confidence intervals 

agree with my conclusion to reject the null hypothesis for β1, β2, β3, and β4, and fail to reject the 

null for β5. 

 The 95% confidence interval of the odds ratios can be determined by taking the 

exponential of βjs. As seen in the table below.  

βj CI for βj CI for Odds Ratios 

β1 (MCS) (e-0.0754, e-0.0166) (0.9274, 0.9835) 

β2 (Education) (e0.0634, e0.3025) (1.0655, 1.3532)  

Β3 (Beck) (e0.0113, e0.1367) (1.0114, 1.1465) 

β4 (PGend) (e-1.3664, e-0.0366) (0.2550, 0.9641) 

Β5 (Age) (e-0.0036, e0.356) (0.9964, 1.4276) 
 When MCS component increases by 1, we are 95% confident that the odds of 

diagnosing depression decreases by 1.65% to 7.26%. When Education level increases by 1, we 

are 95% confident that the odds of diagnosing depression increases by 6.55% to 35.32%. When 

the Beck score increases by 1, we are 95% confident that the odds of diagnosing depression 

increases by 1.14% to 14.65%. The conditional odds ratio of diagnosing depression between 

males and females is between (0.2550, 0.9641), so a diagnosis depression in a male is 3.59% to 

74.50% less likely to happen than in a female. Since Age has 1 in the confidence interval for 

odds ratios, we cannot say anything about what impact it has on the diagnosis of depression. 

 A concordance percentage of 77.96% indicates a moderate association between the 

predicted and observed probabilities of success. The data has 64 diagnosis of depression out of 

400 patients. Therefore the model should be satisfactory in predicting a diagnosis of 

depression.  

Percent Concordant Percent Discordant Percent Tied Number of Pairs 

77.96% 22.04% 0% 21504 
The plots of standardized Pearson residuals are by gender and age, in order to see if 

there was a difference in the residuals over time and by gender. There does not seem to be a 

trend over time, but there are many residual over 2. All of these residuals over 2 are patients 

who were diagnosed with depression, but the model would not have predicted this. It appears 



 

that while the model does a good job of predicting the diagnosis of no depression, it lacks 

power in predicting a diagnosis of depression. 

  

The Hosmer and Lemeshow Chi-Square test statistic was 6.8257 with 8 degrees of 

freedom and a p-value of 0.5556, so we fail to reject the null hypothesis that the model is fitting 

the data. Although the fit is not perfect, it could work in the right setting.  

  

Conclusion and Discussion 

 Using depression diagnosis data from 400 patients, I was able to fit a multiple logistic 

regression model. β1, β2, β3, and β4 were found to be significant by both the Wald hypothesis 

test and Wald confidence interval, while β5 was not. The 95% confidence interval of the odds 

ratios showed the changes in diagnosis percentage for each explanatory variable. The 

concordance percentage indicates a moderate association between the predicted and observed 

probabilities of success. However, the standardized Pearson residuals some deviation because 

of the diagnoses of depression that the model did not think was depression.  This means that 

this model is not good at predicting a diagnosis of depression, but better at predicting a 

diagnosis of no depression. A multiple linear regression with data from diagnoses of depression 

could help with this problem, since there were only 64 cases were the patient was diagnosed 

with depression. Nonetheless, I was surprised to see so many of the residuals above 2. The 

Hosmer-Lemeshow chi-square test showed that although the model was not perfect, it would 

fit the data adequately. This model could be used by therapists, counselors, and psychiatrists to 

see if their patient was at risk of a diagnosis of depression and then plan accordingly.  

Code Appendix 

 



 

#STA 138 Final Project 

#Chirag Kashyap 998388067 

library(MASS) 

library(boot) 

library(ResourceSelection) 

 

final.dat <- read.table("C:/Users/ckashyap/Desktop/Current Courses/STA 

138/FinalProject/final.dat.txt", header=TRUE, quote="\"") 

final.dat$dav = factor(final.dat$dav) 

final.dat$pgend = factor(final.dat$pgend) 

depression.pcs = glm(dav ~ pcs,data=final.dat, family = binomial(link="logit")) 

depression.mcs = glm(dav ~ mcs,data=final.dat, family = binomial(link="logit")) 

depression.beck = glm(dav ~ beck,data=final.dat, family = binomial(link="logit")) 

depression.pgend = glm(dav ~ pgend,data=final.dat, family = binomial(link="logit")) 

depression.age = glm(dav ~ age,data=final.dat, family = binomial(link="logit")) 

depression.educat = glm(dav ~ educat,data=final.dat, family = binomial(link="logit")) 

summary(depression.educat) 

 

depression.null = glm(dav ~ 1,data=final.dat, family = binomial(link="logit")) 

depression.full = glm(dav ~ pcs + mcs + beck + pgend + age + educat ,data=final.dat, family = 

binomial(link="logit")) 

depression.best = stepAIC(depression.null, scope = list(upper=depression.full), 

direction="both", data=final.dat) 

summary(depression.best) 

depression.fullsq = update(depression.best, .~.^2) 

depression.best = stepAIC(depression.best, scope = list(upper=depression.fullsq), 

direction="both", data=final.dat) 

summary(depression.best) 

 

plot(final.dat$pgend, glm.diag(depression.best)$rp, ylab = "Residual", xlab = "Gender", main = 

"Standardized Pearson Residuals" ) 

abline(0,0) 

plot(final.dat$age, glm.diag(depression.best)$rp, ylab = "Residual", xlab = "Age", main = 

"Standardized Pearson Residuals" ) 

abline(0,0) 

 

concordance(depression.best) 

hoslem.test(depression.best$y, fitted(depression.best), g = 10) 

 

#from https://discuss.analyticsvidhya.com/t/how-to-get-the-percentage-concordant-and-

discordant-values-for-a-logistic-regression-model-in-r/1458/2 



 

concordance<-function(model){ 

  # Get all actual observations and their fitted values into a frame 

  fitted<-data.frame(cbind(model$y,model$fitted.values)) 

  colnames(fitted)<-c('respvar','score') 

  # Subset only ones 

  ones<-fitted[fitted[,1]==1,] 

  # Subset only zeros 

  zeros<-fitted[fitted[,1]==0,] 

  # Initialise all the values 

  pairs_tested<-0 

  conc<-0 

  disc<-0 

  ties<-0 

  # Get the values in a for-loop 

  for(i in 1:nrow(ones)){ 

    for(j in 1:nrow(zeros)) { 

      pairs_tested<-pairs_tested+1 

      if(ones[i,2]>zeros[j,2]) {conc<-conc+1} 

      else if(ones[i,2]==zeros[j,2]){ties<-ties+1} 

      else {disc<-disc+1} }} 

  # Calculate concordance, discordance and ties 

  concordance<-conc/pairs_tested 

  discordance<-disc/pairs_tested 

  ties_perc<-ties/pairs_tested 

  return(list("Concordance"=concordance, 

              "Discordance"=discordance, 

              "Tied"=ties_perc, 

              "Pairs"=pairs_tested))} 


